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ABSTRACT 
The general objective of formal neuron adaptation is to give the reliable inputs more influence in determining the 

output than the unreliable inputs have. Adaptation is introduced into the threshold decision element by a circuit that 

performs two operations:  estimates the error probability of each input and uses the estimate to change each vote-

weight. A cyclic error-counting adaptation procedure is the one in which vote-weights are changed periodically 

(cyclically), based on data collected during computations in a period (cycle). If appropriate incremental adjustments 

are made to the estimate of inputs' each error after each computation, then we deal with continuous adaptation. 

There are two methods for detecting errors: comparison with the output decision (closed-loop adaptation) and 

comparison with an externally supplied correct answer (open-loop adaptation). In this paper, the input weighted sum 

is compared with the desired value of this sum, which is multiplied by the correct binary answer. Our results for 

incremental changes of the input weights of the adaptive formal neuron are based on the Widrow-Hoff  algorithm 

and stochastic approximation method. 

 

Keywords: vote-weight, Mahalanobis distance, entropy sensitivity criterion, Widrow-Hoff algorithm, Robbins-

Monro algorithm. 

 

     INTRODUCTION 
Let us suppose that the binary signal x  coded, say, 

as 1  and 1  is supplied to n  same-type data buses

1 2, , , nB B B . Because of probable errors of the 

buses, the value of the variable x  is computed as

1 2, , , nx x x . 

 
 B1 

 xn 

 B2 

 Bn 

 x1 

 x2 

 x 
Decision element 

 y 

 
Fig. 1: Decision element (gate) 

As a result, n  versions are obtained for the value of 

the variable x  supplied for recognition. Clearly, each 

of the values ( 1, )ix i n  is a binary digit taking 

values 1  and 1 . This redundant information (in 

the form of n  versions for the value of the variable

x ) further arrives at the inputs of the so-called 

decision or restoration element whose model is 

shown in Fig. 1.  

As is known, the decision element is a device which 

uses the known binary signals 1 2, , , nx x x  at n  

inputs to determine a binary output signal y  called a 

decision. Saying it differently, the decision element is 

a switching circuit that realizes some binary function 

y  of n  binary arguments 1 2, , , nx x x : 

 1 2, , , ny f x x x .            (1.1) 

The reliability of the decision element essentially 

depends on a type of function (1.1) realized by this 

element. It is obvious that in the ideal case the 

decision y
 
produced by the decision element must 

coincide with the true value of the binary variable x . 

The decision element that realizes the function  
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y x

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where 

1,  if 0

sgn 0,  if 0 ,

1,  if 0

z

z z

z

 


 
 

       (1.3) 

is called a «majority-rule» decision element. Here 

zero stands for an unreliable (indeterminate) value of 

y . For the concrete input combination 

1 2, , , nx x x , the unreliability (indeterminacy) of 

the output variable y  means that either this 

combination is never realized ( n  is an odd number in 

the sum 1 2 nz x x x    ) or for 0z   the 

decision y  is not produced at all. The graph of the 

function sgny z  is shown in Fig. 2. Here the 

arrows indicate that the cusp does not belong to the 

graph, while the point at the origin indicates that the 

output variable y is unreliable. 

 

+1 

-1 

 y 

 z 
0 

 
Fig. 2: Graph of the function y=sgnz 

The main components of the «majority–rule» 

decision element are a summation device which gives 

the output signal    

1

n

i

i

z x


 , 

and a nonlinear two-terminal circuit with the 

characteristic sgny z shown in Fig. 3. 

 

Fig. 3: Model of the «majority-rule» decision element 

It is quite obvious that this element gives the decision 

y  as a result of voting by the principle of a simple 

majority of output signal values. For this reason it is 

often referred to as the voting element. The majority 

rule was first described by J. von Neumann in the 

work [1] and later extended by V.I. Varshavsky to 

analog systems with redundancy [2]. The majority 

rule was investigated in many other aspects, too, but  

we do touch upon them in the present paper.  

The functioning of the restoration circuit with a 

«majority-rule» decision element cannot be 

considered satisfactory if the error probabilities 

1 2, , , nq q q  of  the binary data buses 

1 2, , , nB B B  have different values so that to each 

ix  arriving from the output of the binary bus iB  to 

the i th input of the decision element we have to 

assign its weight  1,ia i n , where ia  is an 

arbitrary real number  ia    . In that 

case, the output decision y  must be given as a result 

of weighted voting according to the relation  

1

sgn ,
n

i i

i

y a x


 
  

 
       (1.4) 

where   is the so-called threshold or quorum of the 

element. Hence it is frequently called a threshold or 

quorum element though it might as well be called a 

weighted voting element. It is easy to see that the 

«majority-rule» decision element is a threshold 

element with  weighted coefficients  1 1,ia i n   

and  threshold 0.  

Let us formally assume that 1na   , and 

1 1nx    . The latter implies that there exists some 

phantom data bus 1nB   which always produces the 

output signal 1 1nx     whatever the input signal x  

is. Then relation (1.4) can be written in the form  

1

1

sgn .
n

i i

i

y a x




 
  

 


         

(1.5) 

The model of a decision element shown in Fig. 4 

fully agrees with this relation. 
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Fig. 4: Model of the decision element 

The need of such a model has arisen because if at the 

initial moment of time the error probabilities of data 

buses can be chosen practically equal to one another, 

in the course of time they nevertheless develop 

differences.  

Threshold logic is quite well covered in the literature 

[3]-[7]. Basic results are related to the problem of 

synthesis of a threshold element (artificial neuron), 

i.e. it has been shown that the considered switching 

function of n  binary variables can be realized by one 

threshold element (artificial neuron), and such 

weights and a threshold have been found that ensure 

the fulfillment of this function. Solutions have also 

been found for problems of the synthesis of networks 

of threshold elements, i.e. for problems of the 

synthesis of artificial neuron networks. However, on 

the whole, these studies are only superficially 

concerned with problems of threshold logic from the 

standpoint of making optimal decisions on the 

restoration of a true signal under the redundancy of 

data buses. Exactly this aspect of the threshold model 

of the functioning of a decision element in the correct 

signal restoration system  interests us [8]-[16] and is 

the subject of investigation in the present paper.  

 

Choice of vote-weights 
Let us introduce the variable   

1

1

n

i i

i

Z a X




 ,            (2.1) 

assuming  that all ix  are random binary variables 

iX  because of the  probability of error occurrence in 

the data buses iB . Then it is obvious that Z , too, 

will be a random variable taking the value z  on the 

real axis, and sgnY Z  will be a random binary 

variable.  

Besides, let us construct the random variable  

 
1 1

1 1

n n

i i i

i i

X Z a X X 
 

 

      ,  (2.2) 

where X  is the binary variable taking the values 1  

and 1  supplied to the data buses  1, 1iB i n  . 

X  is interpreted as a random variable with 

realizations x . 

Realizations of the random variable   are denoted 

by v , and realizations of random variables i  - by 

iv . It is easy to see that the values of v  are discrete 

and belong to the real axis, while the values of iv  are 

either ia  or ia  for all 1, 1.i n   

Let us turn our attention to random variables 

 1, 1iX X i n   . It is easy to see that a discrete 

random value iX X  takes the value 1  for 

iX X  (where X
 denotes the inversion of the 

binary variable X ) with probability iq  and the 

value 1  for X Xi   with probability 1 iq : 

Prob{ 1} Prob{ }

Prob{ 1} Prob{ } 1

1, 1

i i i

i i i

X X X X q

X X X X q

i n

     


       


  

.   (2.4) 

In particular,  

1 1

1 1

Prob{ 1} Prob{ 1}

1 Prob{ 1} Prob{ 1}

n n

n n

q X X X

q X X X

 

 

       


        
, (2.5) 

since 1 1.nX     Hence it follows that 1nq   is the a 

priori probability that the signal 1X    will be 

supplied to the decision element for recognition, i.e. 

1nq    is the a priori probability that at the threshold 

element output we shall have 1  as a correct signal.        

Analogously, 11 nq   is the a priori probability that 

the signal 1X    will be supplied to the input of 

the decision element or, which is the same, the a 

priori probability that the output of the threshold 

element will be 1  as a correct decision. 

The distributions  if v  of probabilities of discrete 

random variables i  are determined using the 

assumptions that i iv a   with probability 1 iq  

and i iv a   with probability iq . Therefore, 

formally,  
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( ) 2 ( ) 2
( ) (1 )

,

1, 1

i i i i i ia v a v a a

i i i i

i i i

f v q q

v a a

i n

    


   


  

.  (2.6) 

 

Criterion of Mahalanobis distance maximum 

When solving the problem of weights optimization, 

we treat it as a classification problem, which means 

that the input signal x  should be assigned to one of 

the two classes 
1  (when 1x   ) and 

2  (when

1x   ) on the basis of 1n  versions

1 2 1, , , ,n nx x x x   of this signal.  

Under this approach, the restored signal should be 

considered as a random variable X  with realization 

.x The characteristics of this variable are 1n  

random variables 1 2 1, , , ,n nX X X X  . It is helpful 

to consider X  as a random vector, i.e. as an ordered 

set of 1n  numbers arranged as a column  

1

2

1 2 1

1

( , , , , )n n

n

n

X

X

X X X X X

X

X





 
 
 
   
 
 
 
 

, 

where the symbol «'» stands for the operation of 

transposition. Hence each element  ( 1, 1)iX i n   

serves as a component of the random vector X . 

A realization of the random vector X  is written as 

the observations vector     

1 2 1( , , , , )n nx x x x x 
 , 

where the components of the vector 

x  are the 

realizations 1 2 1, , , ,n nx x x x   of the random 

variables 1 2 1, , , ,n nX X X X  , respectively. 

The vector X with components 

1 2 1, , , ,n nX X X X   is described by the joint 

distribution function  

 1 1 2 2 1 1( ) Prob , , ,n n n nf x X x ,X x , X x X x     

where the probable values of ( 1, 1)ix i n   are 

equal to 1  and 1 . 

It is easy to see that in the class 1 the vector X  

has the distribution  

   
11 1

2 2
1

1

1 ,
i i

xn x

i i

i

f x q q
 



     (2.7) 

and in the class 2  - the distribution  

   
11 1

2 2
2

1

1 .
i i

xn x

i i

i

f x q q
 



       (2.8) 

These relations hold under the assumption that the 

components 
1 2 1, , , ,n nX X X X 

 of the vector 

X  are independent of one another.  

The mathematical expectation   i iX  of each 

of the components X i  is obtained from the partial 

distributions of the variables X i . These 1n  

mathematical expectations can be represented as the 

vector 

  of means  

 1 2 1, , , ,n nX     
    . 

In particular, in the class 1 the centroid of 

probabilities distribution of the vector X  is given by 

the vector  

1 11 12 1 1( 1)( , , , , )n n     
 ,    (2.9) 

and in the class 2  - by the vector 

 
2 21 22 2 2( 1), , , , ,n n     


   (2.10) 

where 

1

2

1 2

2 1 .

1, 1

i i

i i

q

q

i n





 


  


  

        (2.11) 

From the partial distributions for X i  we compute the 

dispersions  i
2

of random variables 

( 1, 1)iX i n  , and from the joint distribution of 

the components X i  and X j  we compute the 

covariance  ij  of  X i  and X j : 

  
2 , if 

, if 

i

ij j j

ij

i j
X X

i i i j


 



      


   



(2.12) 

Note that ii i 2
and  ij ji . Dispersions 

and covariances generate, in total, the covariance 
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matrix which is a generalization of the notion of 

dispersion of a one-dimensional random variable:  

 

2

1 12 13 1( 1)

2

21 2 23 2( 1)

0

2

( 1)1 ( 1)2 ( 1)3 ( 1)( 1)

n

n

n n n n n

   

   

   





    

 
 
 

   
 
 
 

. 

Since in the considered case the components 

1 2 1, , , ,n nX X X X 
 of the vector X  are 

independent of one another, we have  ij  0  for all 

i j  and 0  is the diagonal matrix  

2

1

2

2

0

2

1

0 0 0

0 0 0

0 0 0 n





 

 
 
 

 
 
 
  

. 

It can be easily verified that the dispersions  i
2

 are 

identical in both classes and defined by the relations   

     2 2 2

1 2
4 1

.
1, 1

i i ii i
q q

i n

       


  

 (2.13) 

Therefore the covariance matrices are also identical: 

1 2 0.            (2.14) 

Thus, when investigating the threshold element, the 

parameters 1 2,   and 0  can be assumed to be 

known, while the principle of its functioning implies 

that the threshold element computes a linear 

combination of observations  

1 1 2 2 1 1n n n nz a x a x a x a x       

called a linear discriminant function. The 

observations vector 

x  is assigned to the class 1 if 

z   , and to the class 2  if z   . When 

z  0 , no decision is produced.  

Let us introduce into consideration a random variable 

Z  by the relation  
1

1

.
n

i i

i

Z a X




           (2.15) 

Or  
1

1

,
n

i i

i

Z Z




               (2.16) 

where 

Z a Xi i i .              (2.17) 

If the observation 

x  arrived from 1, then sum 

(2.15) has the distribution  
1

1 1
1

( ) ( )
n

i i
i

F z f z



  ,         (2.18) 

where   is the symbol of the operation of 

convolution, and  

2 2

1 ( ) (1 ) ,

i i i i

i i

a z z a

a a

i i i if z q q

 

     (2.19) 

where zi  are equal either to ai  or to  ai . 

The mathematical expectation of the random variable 

Z  is  

 
1 1

1 1

1 1

1 2 .
n n

i i i i

i i

m a a q
 

 

     (2.20) 

Analogously, if the observation 

 1 2 1, , , ,n nx x x x x 
    is from the class 2 , 

then the variable Z  has the following probabilities 

distribution  

   
1

2 2
1

,
n

i i
i

F z f z



       (2.21) 

where 

 f z q qi i i

z a

a

i

a z

a

i i

i

i i

i
2

2 21( )  

 

    (2.22) 

and the probable values of zi  are ai  and ai . 

If the observation 

x  has arrived from the class 2 , 

the mathematical expectation of the random variable 

Z  is determined by the formula  

 
1 1

2 2

1 1

2 1 .
n n

i i i i

i i

m a a q
 

 

      (2.23) 

Comparing relations (2.20) and (2.23), we easily 

conclude that  

1 2 .m m               (2.24) 

By the analysis of (2.19) and (2.22) we obtain  

   2 1
.

1, 1

i i i if z f z

i n

  


  

      (2.25) 

Therefore  

   F z F z2 1  .       (2.26) 

The dispersion  z

2
 of the random variable Z  is the 

same in both cases and defined by the formula  
1 1

2

1 1

,
n n

z i ij j

i j

a a 
 

 

      (2.27) 

which, in view of relations (2.13), for ij  0 yields  
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 
1

2 2

1

4 1 .
n

z i i i

i

a q q




      (2.28) 

 For heuristic reasons, the weights 

1 2 1, , , ,n na a a a 
 must be chosen so that the 

mathematical expectations m1  and m2  would stand 

apart from each other as far as possible and the 

dispersion  z

2
 be minimal. 

To this end, it suffices to introduce as a target 

function the generalized Mahalanobis distance [4] 

 
2

1 2

2

z

m m





       (2.29) 

which in the setting of our problem has the form  

 
2

1

1 2

1

1 1

1 1

.

n

i i i

i

n n

i ij j

i j

a

a a

 









 

 

 
 

 





    (2.30) 

The weights  1, 1ia i n  , which give generate 

the maximum of this expression. satisfy the following 

system of equations  

0
.

1, 1

ia

i n






 


  

      (2.31) 

Using expression (2.30), we obtain  

 
1

1 2

1 2 1

1 1 1

1 1 1

.

n

i i i

s s i

n n n

sj j i ij j

j i j

a

a a a

 
 

 





  

  







  
     (2.32) 

Any vector  1 2 1, , , ,n na a a a 


that satisfies the 

system of equations  

 
1

1 2

1

1, 1

n

sj j s s

j

a k

s n

  





  




  


,     (2.33) 

where k is an arbitrary constant, will be a solution of  

system (2.32) as well.  

Since in system (2.29) ij  0  for i j  and 

 ii i 2
, we obtain  

 2

1 2
,

1, 1

s s s sa k

s n

     


  

 

whence  

1 2

2
.

1, 1

s s
s

s

a k

s n

 



 
 




  

        (2.34) 

With expressions (2.11) and (2.13) taken into 

account, we eventually obtain  

 
1 2

2 1 .

1, 1

i
i

i i

q
a k

q q

i n

 
  


  

       (2.35) 

If for qi  1 2 it is desirable to have a positive 

weight, and for qi  1 2  a negative one, then the 

constant k  must satisfy the condition 0   k . 

For these weights, the maximal value max  of the 

generalized distance   is equal to the difference 

(more exactly, to the absolute value of the difference) 

of the mathematical expectations m1  and m2  of the 

sum Z  for the classes 1  and 2 : 

 

 

2
1

max 1 2

1

1 2
.

1

n
i

i i i

q
m m

q q







  


    (2.36) 

Consequently, when the weights ai  are chosen by 

relations (2.35), we have the equality  

 z

m m

2

1 2

1


 .         (2.37) 

From formula (2.36) we see that an increase of the 

number of 1n  inputs of the threshold element, if 

only the error probabilities of these inputs are not 

equal to1/ 2 , leads to the monotonic growth of the 

generalized distance   and therefore to a decrease  

of the probability of incorrect restoration of the signal 

by the decision element.  

Criterion of  entropy  sensitivity 

In the decision element, the system of 1n data 

buses B B B Bn n1 2 1, , , ,   can be regarded as 

some source of binary information with the entropy 

E  defined by the formula  
1

1

,
n

i

i

E E




           (2.38) 
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where  1, 1iE i n   is the entropy of the 

discrete random variable X X i , whose distribution 

is given as a set of probabilities qi  and  1 qi  

which meet its realizations x xi  1 and 

x xi  1 , respectively. 

Therefore  

   1 ln 1 ln ,i i i i iE k q q q q           (2.39) 

where (0 )k k  is an arbitrary positive 

constant, but the entropy may usually be defined also 

assuming that 1k  . 

Therefore  

   
1

1

1 ln 1 ln .
n

i i i i

i

E k q q q q




             (2.40) 

If in two data buses Bi  and B j  the identical changes 

qi  and   j i jq q q     of their error 

probabilities qi  and q j  bring about various  changes 

  E
i
 and   E

j
 of the entropy E , then it is 

natural to assign a greater weight to that data bus 

which has caused a greater change of the entropy. In 

other words, the weight ai  must serve as a measure 

of the entropy change of the information source (the 

set of binary buses) depending on an increment of the 

probability qi : 

a
E

q

i n

i

i



 













1 1,

.              (2.41) 

Using expression (2.40) for the entropy E , from 

(2.41)  we obtain  

1
ln .i

i

i

q
a k

q


                (2.42) 

2.3 Relationship between the weights computed by 

the above two criteria 

We denote by aim  the weights defined by relations 

(2.35) and providing the maximum for the 

generalized Mahalanobis distance: 

 
k

q

q q
a

i

i i

im





1 2

2 1
.     (2.43) 

The weights computed on the basis of the entropy 

approach are denoted by aie : 

k
q

q
a

i

i

ie


ln
1

.     (2.44) 

It is easy to verify  that  

a k
q

q

q

qim

i

i

i

i

  















1

2

1

1
.  (2.45) 

On the other hand,  

1 1 1
exp ln exp

.
1 1

exp -ln exp
1

i i

ie

i i

i i

ie

i i

q q
a

q q k

q q
a

q q k

    
      

   


   
          

  (2.46) 

Using (2.46) in (2.45), we obtain  

a k sh
k

aim ie  










1
.      (2.47) 

In particular, if k  1 ,  then  

 a sh aim ie .        (2.48) 

Thus if the normalizing factor k  is chosen equal to 

1, then weights (2.43), which provide the maximum 

for the Mahalanobis distance, are related to weights 

(2.44) found by using the entropy approach and the 

monotone transformation (2.48) and applying the law 

of hyperbolic sine. 

Fig. 5 shows, for comparison, the graphs of relations 

(2.35) and (2.42) for the case 1.k   
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Fig. 5: Weight - probability relationship diagram 
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Adaptation of the restoring formal neuron 

Adaptation is understood as a process of control of 

the input weights of a threshold element [5] with the 

purpose of making them match the current error 

probabilities of these inputs. The objective of the 

control is to impart more influence to the reliable 

inputs in determining the output than the less reliable 

inputs have. Therefore, at each moment of time t  the 

weight  a ai i    of the thi  

 i n 1 1,  input of the decision element must be 

determined by the error probability  q ti  of this 

input at the moment of time t : 

  a f q ti a i   

The weights control process is complicated by the 

fact that we do not have at our disposal sensors of 

error probabilities  q ti , which could measure 

various physical quantities. Only the statistical 

estimates of these probabilities can be determined by 

the mismatch of the signal X i  produced by the data 

bus Bi  either with the true variable X  supplied by 

a binary variable for recognition or with the decision 

Y  produced by the threshold element. 

In this context, there may be two types of adaptation:: 

adaptation without feedback (open-loop adaptation) 

and adaptation with feedback (closed-loop 

adaptation).  

Regardless of whether there is a feedback or not, 

adaptation is viewed as two procedures: cyclic error-

counting adaptation and continuous error-counting 

adaptation. 

The cyclic error-counting adaptation procedure is the 

one in which the vote-weights are changed 

periodically, using  data collected by computations 

during a period (cycle) that includes the number of 

observations at cyclic of time. 

In the case of the continuous error-counting 

adaptation, error probabilities can be estimated by 

using the devices which correct the vote-weights of 

all inputs after each observation at a cyclic moment 

of time.    

Hence we distinguish adaptations with cyclic and 

continuous correction of weights.  

Judging by the manner in which a cyclic moment of 

time is fixed, for performing the correction the third 

type of adaptation can also be indicated when 

changes in weights occur at random moments of time 

after the data buses reach certain states. In particular, 

the  critical state of the data bus Bi  can be 

determined also by the maximum value q0
 of the 

error probability qi . 

Methods of adaptation without feedback have a 

limited application because of the necessity to supply 

a correct answer externally. They have mainly two 

areas of application: 

 The initial adaptation of a device; 

 Periodic adjustments made to weights during the 

operation of the decision element by using checking 

programs with the known answers. 

 

Continuous adaptation by the Widrow - Hoff  

least-mean-squares algorithm 

Preliminaries 

It is absolutely clear that it is in principle possible to 

organize the adaptation procedure of a threshold 

element in such a manner that in estimating its input 

error probabilities the weight these inputs are 

readjusted not at the end of a cycle by the results of 

M  comparisons, but permanently, upon the 

completion of each comparison. An algorithm of this 

adaptation may, for example, be a procedure of 

penalty and bonus type. In that case, at the 

 1 thk   step the algorithm makes changes in the 

weight vector  

a k  of the preceding step differently, 

depending on whether at  the thk step of adaptation 

the  pattern was classified by means of the vector 

 

a k   correctly or incorrectly . In particular, if the 

pattern is classified correctly, then the bonus may 

consist in that no changes are made to the vector of 

weights, whereas if the pattern is classified 

incorrectly, then the threshold element is penalized 

either by an increase or a decrease of the vector of 

weights. A conclusion on the correct or incorrect 

recognition of the signal X  by the data buses 

1 2 1, , , ,n nB B B B   can be made both by 

comparing the input signals  1, 1iX i n   with 

an externally supplied correct answer and also by 

comparing them with the decision Y .  However, 

sometimes, instead of comparing X  or Y  with each 

individual signal X i , comparison  can be made with 

the result of the collective interaction of all 

 1, 1iX i n  , i.e. with the output signal 

produced by the threshold element summer. 

 Continuous open-loop adaptation (without feedback) 

Let us assume that the signal X  is a random 

sequence of digits 1  and 1  corresponding to the 
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a priori probabilities  11  Pqn  and  

 1 1 2 q Pn  . Also, in the threshold element 

inputs there appears the observations vector 

 
x x x x xn n


1 2 1, , , , according to the 

probabilistic laws  

     
11 1

2 2
1 1

1

/ 1 ,
i i

xn x

i i

i

P x f x q q
 



      

(4.1) 

     
11 1

2 2
2 2

1

/ 1 ,
i i

xn x

i i

i

P x f x q q
 



      

(4.2) 

where  xn  1 1.  

For each observations vector 

x , let us  introduce a 

random variable of classification, or a mark ,  such 

that  

0m    

for x  corresponding to the signal  11 class ,X     

and 

0m    

for x  corresponding to the signal  21 class .X     

For this, it suffices to construct   by the relation  

0 .m X                (4.3) 

Then, in the process of adaptation, data are 

represented as a sequence of pairs  

        1 21 , , 2 , , , , , .kx x x k    

In view of formulas (4.1) and (4.2), the Bayes 

separating function has the form  

 
 
 





0

1

2 1

1 1


x
P x

P x
x

q

q
i

i

ii

n

  






ln
/

/
ln . (4.4) 

The purpose of adaptation consists exactly in, firstly, 

approximating  0


x  with unknown parameters 

 q i ni  1 1,  by means of the finite series  

 0
1

1
x x ai i

i

n

 




       (4.5) 

and, secondly, determining the  weight vector 

 1 2 1
ˆ ˆ ˆ ˆ ˆ, , , ,n na a a a a 


 that minimizes the root-

mean-square error of approximation  

  0

2

1

1 2

 
























M a x xi i o
i

n




.   (4.6) 

For the minimization of  0

2
 it suffices to know the 

Bayes separating function  0 x  defined by 

formula (4.4) with exactly unknown probabilities 

 q i ni  1 1, .  

To avoid this difficulty, we will consider   as a 

noise-corrupted value of the function  0


x .  Then 

the weights vector      ,  , ,  ,  ,


a a a a an n


1 2 1  

which minimizes  0

2
, will also minimize the 

criterion function 

 
2

1

1

, .
n

i i

i

J x a M a x 




  
   

   
       (4.7) 

Taking the partial derivatives of the criterion function 

with respect to weights ai ,  we obtain  

 
  1

0

1

,
, 2

.

1, 1

n

i j j i

ji

J x a
G x a M a x x

a

i n










  
       

   


  


  

Assuming that instead of the real values of 

 G x ai0

 
, ,  we observe their noise-corrupted   

values  

 
1

0

1

, 2
,

1, 1

n

i j j i

j

h x a a x x

i n






 
    

 


  


     (4.8) 

such that  

    M h x a G x a

i n

i i0 0

1 1

   
, ,

,



 






 

and 

      
22

0 0, , ,

1, 1

i i ix a M G x a h x a L

i n

        
  

 

for all weights  a i ni  1 1, ,  where  L   is a 

positive constant, we may apply the Robbins - Monro 

algorithm [6] for the iterative definition of the zero 

ai  of the function  G x a i ni0 1 1
 
, , , .   

Denoting by  ai 1  an arbitrary initial estimate of the 

root of the equation  

 G x ai0 0
 
, ,  
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and by  a ki  the estimate of this root obtained at the 

thk  iteration step, the procedure of correction by 

means of the Robbins - Monro algorithm can be 

written in the form  

        a k a k h x k a k

i n

i i k i   

 







1

1 1

0
 

,

,
,  (4.9) 

where  k is an element of the sequence of positive 

numbers which satisfy the conditions  

lim

.







k
k

k
k

k
k



 

 





























0

1

2

1

        (4. 9 ) 

Such a sequence can be exemplified by a harmonic 

sequence.  

Therefore error corrections by the Robbins-Monro 

algorithm are proportional to the value of the variable 

    h x k a ki0

 
,  in the preceding observation. 

The substitution of (4.8) into the general expression 

(4.9) gives 

         
1

1

1
,

1, 1

n

i i k i j j

j

a k a k x k a k x k

i n

 




 
       

 


  

 (4.10) 

where  k k 2 .  

Relation (4.10) is in essence the correction algorithm 

which Widrow and Hoff used in their work [7]. In 

our case, for a stochastic increment of the thi  

weight 

     1i i ia k a k a k     

that takes place at the  1 thk  iteration step, we 

write (4.10) in the following form  

       
1

0

1

1, 1

n

i k i j j

j

a k X k m X a k X k

i n






 
      

 


  

 .(4.11) 

Our further investigation pursues the following aims: 

 finding a mathematical expectation for the incre-

ment value (4.11); 

 obtaining expressions for weights which correspond 

to the steady state when the mathematical 

expectations of (4.11) are equal to zero. 

Let us assume that the input errors of the threshold 

element are independent of one another and write 

(4.11) in the form  

         
1

0

1 .

1, 1

n

i k i k i j j

j

a k m XX k X k a k X k

i n

 





    




  



 

Here 

           
1 1

1 1

,
n n

j j j j i i

j j
j i

a k X k a k X k a k X k
 

 


    

where the condition j i in the subscript of the 

summation symbol means that the sum does not 

contain a summand with index .i  

Thus  

   

     

   

0

1

1

2

.

1, 1

i k i

n

k i j j

j
j i

k i i

a k m XX k

X k a k X k

a k X k

i n












  



   




 


  


 (4.12) 

For the mathematical expectations of individual 

summands in the right-hand part of relation (4.12) we 

have  

 

   

 

0

0

0

1 1 1

1 2 ,

k i

k i i

k i

M m XX k

m q q

m q







   

        

 

     (4.13) 

      M a k X k a kk i i k i  2 .    (4.14) 

As to the mathematical expectation of the summand  

      k i j j
j
j i

n

X k a k X k 






1

1

,  

it should be calculated using two conditions with 

X  1 and X  1.  

We have 

     

    

1

1

1

1

1

1 2 1 2 ,

n

k i j j

j
j i

n

k i j j

j
j i

M X k a k X k X

q a k q















 
    
 
  

    





 (4.15) 
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     

    

    
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1

1

1

1

1

1

2 1 2 1
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n
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j
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n
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j
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M X k a k X k X
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




















 
    
 
  

     

    







  (4.16) 

Therefore expressions (4.15) and (4.16) coincide and 

it can be claimed that independently of the class 

supplied for recognition, 

     

    

1

1

1

1

1 2 1 2 .

n

k i j j

j
j i

n

k i j j

j
j i

M X k a k X k

q a k q















 
  
 
  

    





  (4.17) 

Taking into account (4.13), (4.14) and (4.17) we have  

      

   
1

0

1

1 2

.1 2

1, 1

i k i i

n

j j

j
j i

M a k q a k

m a k q

i n








       
 
     

  
   

  

  (4.18) 

Since here  

   
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1
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1
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n
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n

j j i i
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a k q

a k q a k q










 

   





 

using this fact in (4.18), we come to the expression  

 

       

   

2

1

0

1

1 2 1 2
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i

k i i i i

n

j j
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M a k

q a k q a k

m a k q

i n







    
      

 
    
 


  


 

It is easy to see that   

         
2

1 2 4 1 .i i i i i ia k q a k a k q q         

Therefore  

    

   
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0

1
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4 1 2

.
1 2

1, 1

i k i

i i i

n

j j

j

M a k q

a k q q

m a k q

i n

 







        
  

 

     
  


  


 (4.19) 

Since the Robbins-Monro algorithm converges when 

conditions (4.9') are fulfilled, the weights will stop 

being changed (on the average) for some finite k . In 

this steady state the following equalities are fulfilled:    

 

  M a k

i n

i 

 







0

1 1,
.        (4.20) 

We denote by ai .the weights which have reached the 

steady state. Then for   ,a i ni  1 1  we have the 

equations 

 

 




,

.a
q

q q

m a q

i n

i

i

i i

j j
j

n







 

 


















1 2

2 1

1 2

2

1 1

0
1

1

 

(4.21) 

It is easy to see that the variables  

 
a

q

q q

i n

i m

i

i i






 









1 2

2 1

1 1,

        (4.22) 

are the weights which give the maximum to the 

Mahalanobis distance between the sets of values of 

the random sum  
1

1

n

j j

j

Z a X




  

in the classes 1  and 2 .  

To the weights  

1
ln

1, 1

i

ie

i

q
a

q

i n

 
 




  

         (4.23) 

computed in terms of entropic sensitivity and being 

optimal in the Bayes sense (i.e. in the sense of the a 

posteriori probability maximum), weights (4.22) are 

related in the following manner  

 a a

i n

i m ie

 







sh

1 1,
.         (4.24) 
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Now, introducing the constant   depending on the 

value of a steady-state weight, we obtain  

 

,
,

a a sh a

i n

i i m ie   

 







 

1 1
   (4.25) 

where  

 
1

0

1

ˆ 1 2

.
2

n

j j

j

m a q







 




      (4.26) 

The expression for   can be written in a more 

compact form if we take into account the fact that the 

maximal value max  of the Mahalanobis distance   

is defined by the relation  

 
 

 
2

1 1

max

1 1

1 2
2 1 2 .

1

n n
j

jm j

j jj j

q
a q

q q


 

 


   


    (4.27) 

Indeed, in view of expressions (4.25) and (4.27) we 

can write formula (4.26) in the form  

 
1

0
0 max

1

11 2
2 .

2 2

n

jm j

j

m a q m  






     

 


 

Hence  







2

4

0m

max

.            (4.28) 

Substituting (4.28) into (4.25), we obtain 

 0 0

max max

2 2
ˆ

4 4 .

1, 1

i im ie

m m
a a sh a

i n

 


     


  

 (4.29) 

Thus, as a result of continuous adaptation without 

feedback the weights are established, which are 

proportional to the weights which give the maximum 

to the Mahalanobis distance.  

Continuous closed-loop adaptation (with  feedback) 

In the case of continuous adaptation with feedback, 

when weight increments are determined by the 

Widrow-Hoff algorithm, the mark   is computed as  

0 ,m Y  where Y is the output decision of the 

threshold element and, instead of the error probability 

qi  of the thi  input, we have to operate with the 

probability d i  that this input will mismatch the 

variable Y . 

Fig. 6 shows the flow-diagram of realization of the 

methods of continuous adaptation (both without and 

with feedback) by the Widrow-Hoff algorithm. 
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 Fig. 6: Flow-diagram for closed- and open-loop 

adaptation by the Widrow-Hoff algorithm 

 

Results and discussion 

a) The weights
iea computed by the entropy 

sensitivity criterion are defined by formula (2.44): 

 
1

ln 1, 1i

ie

i

q
a k i n

q


    , 

while the weights 
ima computed by the criterion of 

Mahalanobis distance maximum are defined by 

formula (2.43): 

 
 

1 2
1, 1 .

2 1

i

im

i i

q
a k i n

q q


   


 

b) The relationship between iea  and ima  is 

established by means of the monotone transformation 

(2.47): 

 1
1, 1 .im iea k sh a i n

k

 
     

 
 

c) A maximal value of the Mahalanobis distance is 

defined by expression (4.27): 

 
 

2
1

max

1

1 2
.

1

n
j

j j j

q

q q










  

d) As a result of continuous adaptation, weights 

(4.29) are established, which are proportional to the 

weights which give the maximum to the Mahanobis 

distance: 

 

,

.max max

a
m

a
m

sh a

i n

i i m ie


 


 









2

4

2

4

1 1

0 0

   

We can state that the method of continuous 

adaptation is qualitatively very close to an optimal 

method defined by the weights iea  computed by the 

criterion of entropy sensitivity since the weight ima  

in the above formula computed by the criterion of 
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Mahalanobis distance maximum is proportional to 

 iesh a  and monotonically (but not in direct 

proportion) depends on 
iea . 

 

CONCLUSION 
It is shown that this adaptation procedure has an 

equilibrium setting of vote-weights proportional to 

the hyperbolic sine of the entropic vote-weights. This 

adaptation method may be said to be optimum in the 

sense of the P.C. Mahalanobis's criterion and 

qualitatively suboptimum from the standpoint of  the 

entropic sensitivity definition since shX  is monoto-

nic related to X . 

The method would be most valuable when the inputs 

either operate correctly or have error probability of 

one-half. As correctly noticed by W.H. Pierce [5], 

this method may require less equipment to implement 

than other incremental procedures, because of the 

feature that the magnitudes of the vote-weights are 

changed by equal amounts. 
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